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Infinite Sets of Primes with Fast Primality Tests 
and Quick Generation of Large Primes 

By Jdnos Pintz*, William L. Steiger**, and Endre Szemer6di 

Abstract. Infinite sets P and Q of primes are described, P C Q. For any natural 
number n it can be decided if n E P in (deterministic) time O((logn)9). This answers 
affirmatively the question of whether there exists an infinite set of primes whose mem- 
bership can be tested in polynomial time, and is a main result of the paper. Also, for 
every n E Q, we show how to randomly produce a proof of the primality of n. The 
expected time is that needed for 1 exponentiations mod n. We also show how to 
randomly generate k-digit integers which will be in Q with probability proportional to 
k-1. Combined with the fast verification of n E Q just mentioned, this gives an 0(k4) 
expected time algorithm to generate and certify primes in a given range and is proba- 
bly the fastest method to generate large certified primes known to belong to an infinite 
subset. Finally, it is important that P and Q are relatively dense (at least cn2/3/ log n 
elements less than n). Elements of Q in a given range may be generated quickly, but 
it would be costly for an adversary to search Q in this range, a property that could be 
useful in cryptography. 

1. Introduction. A leading problem in computational number theory is pri- 
mality testing: given an integer n > 1, decide whether or not n is prime. The 
crudest algorithm checks each integer m, 2 < m < \/. As soon as one divides n 
it answers "no"; otherwise n is prime. This algorithm is poor because it can take 

0(v\/') "steps", which is exponential in the input size of [lognl bits (all logs are 
base 2). Asymptotically it would be too slow to be practical. A good algorithm 
from the complexity standpoint would have to run in time that is polynomial in 
the input size, or in O((logn)k) steps, k fixed. 

Miller [8] gives an algorithm which, assuming the truth of the General Riemann 
Hypothesis (GRH), can check if n is prime in O((logn)5) steps. Although the 
running time is acceptable, a major disadvantage is that we do not know if GRH 
is true. The best unconditional result is by Adleman, Pomerance and Rumely [2], 
in which the primality of n may be decided in O((log n)Clog log log n) steps. 

In light of the discouraging fact that we do not know whether primality may be 
tested quickly, two different approaches arise, one deterministic, the other prob- 
abilistic. The first seeks subsets of primes whose membership may be decided in 
polynomial time. The second seeks random algorithms which have fast expected 
running times. 
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With regard to the first, it is not yet known whether there even exists an in- 
finite subset of the primes whose membership may be decided quickly. The first 
main result of the present paper gives an affirmative answer. In the next section 
we exhibit a reasonably dense set of primes P for which "n E P?" may be an- 
swered in 0((log n)9) steps. To be more precise, a step will now be taken as an 
arithmetic operation on binary digits. Thus, to add integers x and y, x,y < n 
takes 0(log n) steps, and to multiply x and y, 0((log n)2) steps. In fact, using the 
fast Fourier transform, Schonhage and Strassen [12] show how to multiply x and 
y in 0(lognlog2nlog3n) steps, where logj is the jth iterated logarithm. We will 
often use this fact when we reiterate a complexity statement, and put the improved 
bound implied by [12] in a pair of curly brackets {{-}}. To simplify the writing, 
we will use 0((log n)1+6) for the bit complexity of fast multiplication of x and y. 

The second direction seeks probabilistic algorithms to decide primality that have 
fast expected running times. Rabin [11] proposed a Monte-Carlo method to quickly 
test primality. Given an integer n, in expected time 0((log n)3) {{0((log n)2+e)}} 

it either correctly declares n composite via a witness of length 0(log n), or else 
concludes that n is probably prime. The latter case could occur if n were really 
composite, although this is very unlikely. Because the assertion "n is composite" is 
proved by a witness, the test is really one for compositeness. It could be a drawback 
for some purposes that the algorithm may erroneously accept n as prime. 

The Las Vegas algorithm of Goldwasser and Kilian [5] uses properties of elliptic 
curves to decide the primality of n. Either n is correctly declared composite or for 
almost all primes, a sequence P1, ... I Pk of primes is generated, n > P1 > ... > Pk, 
k = 0(log n). The sequence, called the certificate, may be independently checked 
for primality and the primality of n verified. It was shown in [5] that for almost 
all primes the algorithm runs in time 0((logn)9+t), t > 1. Unfortunately, it is 
not known how this algorithm behaves on the exceptional set of primes. Finally, 
Adleman and Huang [1] have given an algorithm that can decide primality in all 
cases in expected polynomial time, but at the expense of a slower expected running 
time than that of [5]. 

The second main result of the present paper merges the two approaches. We 
describe a reasonably dense set of primes, Q, from which elements in a given range 
may be quickly generated and proved prime. The main ingredient is a Las Vegas 
algorithm for testing n E Q. If n really is in Q it will find a certificate of length 
0(log n) in expected time 0((log n)3), the time needed for 1 - exponentiations 
mod n. This algorithm is used in conjunction with a simple method to randomly 
generate k-digit integers which will belong to Q with probability proportional to 
k-1. Altogether then, in expected time 0(k4), we will generate a k-digit element 
of Q and also give a certificate to prove its primality. Rabin's compositeness test 
could also be used in generating large probable primes, if a random odd integer 
in the appropriate range were tested by his algorithm. The advantage is that any 
prime might be "generated" in this way and the complexity is of the same order as 
our method. The drawback is that a composite number might be produced. 

Because the density of Q is relatively high (I{rn e Q: n < x}I > cx2/3/logx, x > 

xo), this set Q could be useful in cryptographic applications. For example, if the 
encryptor were using primes in Q with about 100 digits, the code breaker would 
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need to search about 1063 members of Q in this range. Other easily tested subsets 
of primes do not have the nice density property. For example, the code breaker 
could easily test the Mersenne primes (n = 2P - 1 for certain primes p) using the 
Lucas-Lehmer test (see [13]), since there are only 13 Mersenne primes of 100 digits 
or less and it is not even known if they form an infinite subset. Other subsets 
of primes have been used in fast generation of large, certified primes. The costs 
may be less than with our method, but only by a small factor of proportionality. 
However, none of these sets has so far been proved infinite. Section 5 discusses the 
fast generation of elements of Q. 

Only elementary number theory is needed to show that membership of P and 
Q may be decided quickly. The main tool is the Brillhart, Lehmer, Selfridge n - 1 
test [4]. The details appear in Section 3. But to establish the density of P and Q, 
we needed to use deep results from analytic number theory. Section 4 is devoted 
to these arguments. 

2. The Sets P and Q. Define the sets 

I, = {n: 27r-1 < n < 27m' n = 1 (3m)} 

(1) QM = {primes p E Im}, 

Pm = {p E Qm: 31, 1 < 1 < clog6p, i(P-l)/3 X 1 (p)}, 

where c is a suitably chosen absolute constant, and write 

(2) Q U Qm, P= U Pm. 
m>3 m>3 

We will show that P is an infinite set of primes whose membership can be tested 
quickly and that Q is a larger set from which primes in a given range may be quickly 
generated. 

First, as a brief motivation for these definitions, we note that Dirichlet (1837) 
showed that if (c, d) = 1, the arithmetic progression aj = c + jd contains infinitely 
many primes. Taking c = 1 and d to be a prime power pk (as in Im), the aj may 
be tested quickly for primality as long as j is not too large. For example, j < p2k 

implies that pk, the factored part of aj - 1, satisfies pk > a1/3, and then the 
Brillhart, Lehmer, Selfridge test may be applied to quickly check aj for primality. 

This would not be useful to us unless there would be a reasonable density of 
primes in the beginning segments of such progressions. It is perhaps fortuitous 
that a result of Barban, Linnik, and Tshudakov implies that once aj > c(pk)8/3+e, 

the sequence already has a high density of primes. Taking p = 3 and noting that 
c(3m)8/3+e < 27m-1 for large enough m, we see that Im has two crucial properties. 

First, its elements can be tested quickly for primality. Secondly, many primes will 
be found. The first assertion is easily established in the next section. The other is 

dealt with in Section 4. 

3. Testing Membership in P and Q. The following statements appear in 
a more general form in Lenstra [7]. They help elucidate some of the properties of 
these sets. 

LEMMA A. Let n < 27m. If there is an integer a satisfying a3m -= 1 (n) and 
(a3 - 1, n) = 1, then n is a prime or a product of two primes -1 (3m). 
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Proof. If r is a prime dividing n, then a3m =_ 1 (r), and a3M1 X 1 (r). Thus 
3m divides r - 1. The condition n < 27m guarantees that n has at most 2 prime 
factors _ 1 (3m). 0 

Remark 1. If n = k3m + 1 is prime and 1(n-1)/3 0 1 (n), then a = lk satisfies 
the conditions of Lemma A (and such an 1 exists if n is a prime). It is called a 
certificate of the primality of n. 

A simple fact about composite n E Im which satisfy the conditions of Lemma A 
is 

LEMMA B. Suppose n = (x3m + 1)(y3m + 1) < 27m x, y > 1, and also that 
n=C 9m+D 3m+1, whereO<C<3m and l<D<3m. Thenxy=C and 
x+y=D. 

Proof. The relations (x - l)(y - 1) > 0 and n < (3m)3 imply that 0 < x + y < 

xy + 1 < 3m 11 = 3m. On the other hand, it is clear that n _ D3m + 1 
(mod 9)m and also n (x + y)3m + 1 (mod 9)m, so x + y-D (mod 3)m and 
therefore x + y = D. Also, xy9m = n- 1 - (x + y)3m = n- 1 - D . 3m = C9m, so 

C = xy as well. 5 

The point of Lemma B is that, if n < 27m has both representations, D2 - 4C is 
the square (x _ y)2, and conversely. Thus, we have the 

COROLLARY. If n = C .9m + D * 3m + 1, where 0 < C < 3m, 1 < D < 3m, then 
n can be written with natural numbers x and y in the form n = (x3m + 1)(y3m + 1) 
if and only if D2 - 4C is a square. 

The facts we need from [7] may now be summarized by the following statement: 

THEOREM A. Let n = C 9m + D 3m + 1 with 0 < C < 3m, 1 < D < 3m. 

Then n is a prime if and only if both of the following conditions hold: 

(i) D2 - 4C is not a square. 
(3) (ii) There exists 1 with ln-1 n 1 (n) and (1(n-1)/3 - 1X n) = 1. 

Condition (i) distinguishes primes satisfying (ii) from products of such integers. 
To test if n E Pm for the appropriate m, the following procedure exploits Theo- 
rem A. 

ALGORITHM 1. 

[1] FindC,D:n=C9m+D3m?+10<C<3m 1<D<3m. 
[2] If D2 - 4C is a square, "n is composite". 
[3] Else test each 1, 1 < 1 < c(logn)6, for In1 1 (n) and (l(n-)/3-1, n) = 1. 

If yes, "n E Pm by certificate 1. 

[4] Else "n 0 Pm" 

If n E Qm, m > 3, it has a representation as in line [1]. Line [2] eliminates 
composite n which could satisfy line [3]. 

For every 1 tested in line [3], l(n-1)/3 may be computed in O(logn) multiplica- 
tions and the gcd needs O(log n) additions/subtractions. Using O((log n)2) steps 
as the cost of each multiplication and the fact that there are O((logn)6) values of 
1 to check, we see that the algorithm terminates in time O((logn)9). If fast mul- 
tiplication were used, the cost could be reduced to O((logn)8+6) steps, which we 
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denote by {{O((logn)8+,)}}. To test n E P, find the appropriate m and then use 
Algorithm 1. Once 1 has been found, the assertion "n is prime because of 1" may 
be verified in O((logn)3) steps {{O((logn)2+6)}}. Therefore: 

THEOREM 1. Algorithm 1 terminates in O((logn)9) time {{O((logn)8+e)}} 
and either 

(a) shows that n 0 P, or 
(b) gives a certificate 1 of length O(log2 n) for the primality of n, which can be 

verified correct in time O((log n)3) {{O((log n)2+) }j}. 

The most interesting point remains to be proved, namely that P is infinite. This 
will follow from 

* Q is an infinite set (see Lemma 1 of the next section), and 
* most primes in Q are also in P (see Lemma 4 of the next section). 
If n = p is a prime, condition (ii) of Theorem A requires a value I satisfying 

((p-l)/3 - 1,p) = 1. Taking any primitive root g and writing 1 = gb (p), this 
condition is equivalent to 3 t b, a relation satisfied by 2/3 of all reduced residue 
classes mod p. Given n E Qm, a random choice of 1 from the uniform distribution 
on 1, ... , n - 1 would give an 1 which satisfies (l(n-1)/3 - 1, n) = 1 with probability 
2/3. This motivates the procedure for checking if n E Qm. 

ALGORITHM 2. 

[1] FindC,D:n=C9m+D3m+1,O<C<3m 1<D<3m. 
[2] If D2 - 4C is a square, "n is composite" and STOP. 
[3] Repeat (at most) k times: 

Randomly choose 1, 1 < 1 < - 1. 
If (3) holds, "n E Qm" and STOP. 

[4] Else "n is probably composite". 

Once again, the cost of lines [1] and [2] is less than that of the loop in line [3]. 
Therefore, using this procedure, every element of Qm can be proved to be prime in 

O((logn)3) expected time. 

THEOREM 2. Algorithm 2 terminates for every n E Q in expected time 
O((logn)3), {{O((logn)2+e)}} and gives a certificate I of length O(logn) for the 
primality of n, which can be verified correct in O((logn)3) time {{O((logn)2+e)}}. 

Remark 2. The expected number of exponentiations needed to obtain a certificate 
1 for the primality of n e Qm is 3/2. This may be improved by using an odd prime 
p > 3 in place of 3: Now Im would be the integers between (p3)m-1 and (p3)m 
which are congruent to 1 (mod p)m; a randomly chosen residue class I will satisfy 
In-1 = 1 (n) and (1(n-l)/p - 1,n) = 1 with probability (p - 1)/p, so we expect to 
find a certificate for the primality of n E Qm in pl (p -1) exponentiations. It is hard 
to imagine a method that could certify the primality of n with less work than one 
exponentiation. Incidentally, Pomerance [10] has recently shown that every prime 
may be proved to be prime with one exponentiation. However, no fast algorithm 
to find Pomerance's certificate is known. 

The set Q may be used in a very quick random algorithm to generate primes of 
a given order of magnitude. This will be discussed in Section 5. 



404 JANOS PINTZ, WILLIAM L. STEIGER, AND ENDRE SZEMEREDI 

4. Density of P and Q. In this section we show that both P and Q ultimately 
have about cx2/3/log x elements up to x. If we assume the GRH, 

(i) Qm contains the expected number of primes (IQml c9m/m), and 
(ii) Pm = Qm, once m is large enough. 
Statement (i) is the prime number theorem for arithmetic progressions; (ii) was 

proved by Ankeny and Montgomery (cf. [9]), even if (log p)2 replaced (log p)6 in the 

definition of Pm in (1). 
The GRH is not necessary for (i). A result of Barban, Linnik and Tshudakov 

implies 

LEMMA 1 (Barban, Linnik, Tshudakov, [3]). The cardinality of Qm is given by 

Q n27 qm(3m)(( )) mIn27 (7(m)) 

where as usual +(D) denotes the number of reduced residue classes mod D. Thus, 

IP E Q,p < xl > cx2/3/logx, x > xo, c an absolute constant. 

Therefore, Q is infinite. Moreover, for large m, the density of Qm in Im is close 

to that of the primes in the integers: 

IQmi = (1 + O(m1)). 

To see that P is also infinite, we relate Pm I to IQm I. It seems to be hopeless, to 

establish (ii) by current methods, without using any unproved hypotheses. Instead, 
we will show (Lemma 4) that IPm = IQm I (1 + 0( m )), using a modification of the 
Ankeny-Montgomery argument and known density theorems. 

LEMMA 2. Let X be a nonprincipal character mod p. If L(s, X) :$ 0 for s = 

a + it, a > 1 - h, tl < log2p, then there exists an 1, 1 < I < Ci(logp)l/h, with 

x(l) 1. 
Proof. Write p = /+ ? i-y for the zeros of L(s, X). If x(m) = 1 for all m < N, 

where N < p, we get, as in [9, Theorem 13.1], 

E X(n) (1-) A (n) =- 
N 

+ ? (logp) 
n<N Np pp+1 

Z N ( + 1) + ? ( N ?ogp +? 0(logp) 

yI?Y1o1g2 pp 
+ 1) klog'p / 

?< Nlh logp + logNp 

The prime number theorem implies that the left-hand side is N/2 + o(N), because 

x(n) = 1 for n < N, and so we obtain Nh < logp, which implies the asser- 
tion. 0 

To see how to use this result, fix any primitive root go mod p and choose the 
character Xi as Xi(go) = e i27r/3. Letting I = ga (mod p), we notice that 

j(p-l)/3 0 1 (p) ga(p-l)/3 1(p) 3 a x(l) 1. 

In this way, we can demonstrate that an element p of Qm definitely belongs to Pm 
as long as the condition of Lemma 2 holds for all nonprincipal characters mod p, 



INFINITE SETS OF PRIMES WITH FAST PRIMALITY TESTS 405 

with h = 6- C2/log2 x. Since a nonprincipal character mod p is a primitive one, 
it is sufficient for IPmI = IQmI(1 + O(-)) to show, for example, that with x = 27m 

(4) IQM\Pm I < N(l1-h, og2 X,X) << 
3m0 

q?x x(q) ~~~3ml1og2x' 

where N(a, T, X) = 1, the sum extending over {p = I3 + i-y: L(p, X) = 0, IJ > a, 
1hi < T} and EZ(q) denotes summation over all primitive characters X mod q. But 
this relation is a direct consequence of the following density theorem of Huxley and 
Jutila. 

LEMMA 3 (Huxley and Jutila [6]). If a > 4/5, K > 1, T > 3, then 

E EZ N(o,T,X) < (K2T)2(l1-)(log KT)C3. 
q<K x(q) 

Applying this result to the middle term of (4) with h = - 
(2 + C3/4) log log x/ log x, we see that 

IQM\PMI < (x2 log2 X)1/3-2e(logX)C3 << X2/3-4(logx)2/3+C3 

x2/3 x 

(log x) 2 3m (log x) 2 

as required. This now proves 

LEMMA 4. One has IPmI = IQmI(1 + ()). 

Combined with Lemma 1, this gives 

THEOREM 3. If x > xo then |{p E Q;p < x}| > |{p E P;p < x}| > cx2/3/logxX 

5. Fast Generation of Primes. We now discuss the generation of k-digit 
primes. To obtain elements from Q in a given range, we choose the relevant value 
of m and then randomly search Im. The density result in Lemma 1 implies that 
we expect to succeed quickly, namely in O(m-1) steps. 

ALGORITHM 3. 

[1] Randomly choose C,D, 3m3 < C < 3m 1 < D < 3m. 
[2] Test n = c9g ? D3m + 1 using Algorithm 2. 

If n prime, STOP 

Else REPEAT [1]. 

The probability of generating n E Q in line [1] is 0(logn)-', so we expect to 

find a prime in 0(log n) queries. Since line [2] takes 0((log n)3), we have 

THEOREM 4. A k-digit prime may be generated in expected time 0(k4) 
{{O(k3+e)}} along with a certificate I of size 0(k), which may be verified in 0(k3) 
steps {{O(k2+6)}}. 

Remark 3. Rabin's algorithm might be considered the method of choice in gen- 

erating large primes. A k-digit odd integer n is chosen at random and tested for 

primality as follows: A sequence of at most r random integers ai < n is generated. 

For each, a test is performed to check if ai is a "witness" to the compositeness of 

n. The test is reliable in that a "yes" answer occurs only if n is composite. The 
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test takes O((log n)3) steps. If no witness is found in the sequence, n is declared 
"probably prime". If n were actually composite, the test could accept it as prime, 
but with probability at most 4-r. If the randomly chosen n really is prime, the 
test would declare "n is prime with probability > 1 -4-". The time for this is 
that of r exponentiations. By way of contrast, if the randomly chosen n E Im is a 
prime, our method needs the expected time of 3/2 exponentiations to assert "n is 
certainly a prime". As mentioned in Remark 2, the constant 3/2 can be replaced 
by any c > 1. There exist other methods (Pepin's test for Fermat primes, or the 
Lucas-Lehmer test for Mersenne primes) which can be used in the generation of 
certified primes and which have expected costs possibly lower than ours, but only 
by a small multiplicative factor. However, the primes that may be generated are 
not known to comprise an infinite set. 

Remark 4. In an actual implementation of Algorithm 3 one would sieve out those 
n which have a prime divisor less than logn, say. This would reduce the running 
time by a factor of clog log n, or d log k if n has k digits. 
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